Installation

Installing the Vectus Composite Piping system in pneumatic and noble gas system is not only very easy but cost-effective as well, as it doesn’t require any involvement of heavy machines or highly skilled labor. Hence, making the overall cost even much lesser than any other system.

1. Cut the composite pipe at right angles into length with Ratchet pipe cutter.
2. Insert the compression nut and split ring into the pipe.
3. Round-en the pipe with the help of calibrating tool.
4. Chamfer the smooth edge of the pipe so that it can be fitted inside the fitting.
5. Tighten the external compression nut, which will ensure that it remains air tight and doesn’t fail at designed pressure.

Vectus Composite Piping system is highly flexible when it comes to the installation. It can be maneuvered easily as per the requirement even after installation, hence, saving cost and increasing the productivity of the entire system.
Vecus Composite Piping System

Vecus introduces Composite Piping System (PE-AL-PE) - the most advanced piping system used worldwide.

Corrosion resistance, scale free, being inert to acids & chemicals and a smooth bore are few of its unique features. Durability, flexibility and strength make Vecus Composite Pipes ideal for hot and cold water plumbing, potable water system, central heating, under floor heating, chemical and gas transportation, jet & submersible pump piping and even as electric wire conduit.

Vecus Composite Pipes are composed of an Aluminium core encaised in an inner and outer layer of Polyethylene (PE). All the layers are permanently bonded together by intermediate adhesive layers.

The level of thickness of the aluminium layer in Vecus Composite Pipes has been set to meet compressive and flexural strength requirements. This helps to combine the advantages of metal and plastic pipes and eliminate the disadvantages of both materials at the same time. The aluminium core is absolutely diffusion tight and reliably prevents oxygen or gases from permeating into the pipe. It compensates and reduces snap-back force and heat expansion with changes in temperature.